10 resultados para Sourdough bread--Microbiology

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem. since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comments about education and medicine teaching were made. The learning and the curriculum in according with the priorities of the country's health had special emphasis.Students and teachers of Botucatu considered that the improvement of the 2nd year medical microbiological course was good with predominantly basic contents. The students prefer a balanced content or predominantly applied to medicine.Three phases of the teaching of microbiological contents are proposed: 1st - in the basic cycly (2nd year); 2nd - into the course of Clinical Laboratory (3rd or 4th year); 3rd - into the clinical cycle, following a program of integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the beginning there was yeast, and it raised bread, brewed beer, and made wine. After many not days but centuries and even millenia later, it was named Saccharomyces cerevisiae. After more years and centuries there was another yeast, and it was named Schizo-saccharomyces pombe; now there were two stars in the yeast heaven. In only a few more years there were other yeasts, and then more, and more, and more. The era of the non-conventional yeasts had begun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dough-leavening power of baker's yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell's pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 degrees C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. on the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermophilic fungus Thermoascus aurantiacus (CBMAI 756) on solid-state fermentation using corncob as a nutrient source produces an enzyme pool with the potential to be used in bread making. In this paper, the use of this enzyme cocktail as a wheat bread improver was reported. Both products released by flour arabinoxylan degradation and bread quality were investigated. The main product released through enzyme activity after prolonged incubation was xylose indicating the presence of xylanase; however, a small amount of xylobiose and arabinose also confirmed the presence of xylosidase and α-L- arabinofuranosidase, respectively. Enzyme mixture in vitro mainly attacked water-unextractable arabinoxylan contributing to beneficial effect in bread making. The use of an optimal enzyme concentration (35 U xylanase/100 g of flour) increased specific volume (22%), reduced crumb firmness (25%), and reduced amylopectin retrogradation (17%) during bread storage. In conclusion, the enzyme cocktail produced by T. aurantiacus CBMAI 756 can improve wheat bread quality. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research was undertaken to explore the influence of fructooligosaccharides (FOS) on the functional and thermal properties of sour cassava starch and the quality characteristics of gluten-free (GF) cheese bread. Fructooligosaccharides were used to replace sour cassava starch at substitution level of 9% (SF1), 17% (SF2), and 29% (SF3). The functional and thermal properties of the starch-FOS mixtures were determined by the water absorption index (WAI), water solubility index (WSI), pasting profile analysis, thermal transition temperatures and enthalpy of gelatinization. Moreover, the GF cheese breads with starch-FOS mixtures were analyzed for height, diameter, weight, specific volume and dough moisture content. The sample with the highest FOS content (SF3) presented the lowest WAI (1.44), peak (62.4 rapid visco units (RVU), breakdown (53.4 RVU), final (13.8 RVU), and setback (4.9 RVU) viscosities, dough moisture content (31.7%), and enthalpy of gelatinization (9.5 J/g) and the highest WSI (29.4%) and pasting temperature (69.1 degrees C). The height, diameter and specific volume of GF cheese bread samples made from sour cassava starch were 3.14 cm, 6.35 cm, and 1.49 cm(3)/g, respectively. The SF1 mixture samples resulted in a 3.01 cm height, 6.34 cm diameter, and 1.55 cm(3)/g specific volume. According to Brazilian food labeling regulations, the latter product cannot be categorized as a good source of fiber because the minimum level of fiber per portion was not reached.